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ABSTRACT

Equivalent circuits for TEM couplers (1,2),
important in the design of coupled line filters,
E.G. interdigital or combline, are inadequate
approximations for quasi-TEM structures such as
microstrip. Exact quasi-TEM coupler equivalent
circuits are developed consisting of TEM line
configurations suitable for CAE design and
analysis applications.

INTRODUCTION

The voltage and current vectors for a
coupled line are related by,

av aI
=-jco LI,

az
—=-jcd~V

a.2
where

These result in the second order equations

az v
+02 LCV =0,

dz 2
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where
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Since a TEM line has a unique propagation
velocity the matrix m must be a diagonalized,
i.e.,

O_c=tl= ~.n,

where ‘Y%is the phase velocity of the medium and
i is the identity matrix. This imposes the well
known relationship between the inductances and
capacitances,

L1,2 =
C2,1+ Cm

vp2 ( C1C2 +clcm+c2cm)’
and

Lm = LI,2 cm
C2, 1 •1- Cm

Since capacitances and phase veloeity are
sufficient to represent propagation on TEM line
we see that a TEM coupler must be equivrdent to a
series configuration of three transmission lines
(2) shown in Figure 1. This equivalent circuit

‘w”
Figure 1. The three line equivalent circuit

for a TEM coupler.

has greatly facilitated coupled line analysis
critical to the design of interdigital and
combline filters. A similar equivalent circuit
for microstrip couplers must account for the
quasi-TEM nature of the medium.

QUASI-TEM SYMMETRIC COUPLERS

For a symmetric quasi-TEM coupled line the
matrix product,

EC=
[

LC+LC. -L.C. L. C+ L. C.-LC.
L. C+ L. C.-LC. LC+LC. -L.C. 1

unlike a TEM coupled line, is not a diagonalized
matrix. However, the linear transformation,

T=
[1

11
1 -1
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defines the even and odd modes, ; and ~ by

V= T?and I= T;,

results in the second order equation for the
orthogonal voltage mode

a2 ;
+co2T-l L~T; =0

az 2

The matrix product

U-’LCT=
[

(L+&)C
(L.Lm):c+2c4 1

= %..
[ o %?d! 1

determines the wave propagation velocity which
depends upon the modes.

The even and odd mode capacitances are found

and the even and odd mode characteristic
impedances are

Zeven = [’l%.. C ]-1

z-d~ = [%dd (C+2@ ]-1

Since each of the orthogonal modes is by
itself a TEM system, then it is possible to
utilize the three-line equivalent circuit of the
TEM coupled line to construct a similar type
equivalent circuit for the quasi-TEM coupled
line. This is carried out by reversing
the transformation, i.e.,

N
f= T-iv; I = T-l I,

and separating the capacitance contribution for
each mode. Consequently,

aI

[

Ceven O
—=-jc-9T

az 10 Codd ‘-1 v

in which
T

[

Cev.n O -1 =10 Codd T

The capacitance matrix for the quasi-TEM
line is the sum of two matrices each of which
represent TEM lines, The two TEM capacitive
networks are shown in Figure 2, and can be
replaced by the three-line equivalent circuit.
In the first matrix one of the lines has a
negative impedance. In the second matrix two of
the lines to ground are seen to be of infiite
impedance and can therefore be omitted resulting
in an equivalent circuit consisting of one tine.
The total equivalent circuit, therefore, consists
of four TEM lines of two different lengths
equating to the even and odd phase velocities.
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Figure 2. The four line equivalent
circuit resulting from the four capacitances

for a symmetric quasi-TEM coupler

An understanding of a line with
characteristic impedance is obtained
at its S-parameters, i.e.,

-j(Z?-Z~)Tanf3
Sll(-z.c) =

2ZCZ0 - j(Z?+Z~)Tan6

z. [l+ S1l(-ZC)]
S21(-ZC) = =

Zocos $ - jZc SinO

negative
;y looking

= Sl;(z)

S2;(ZC)

A negative characteristic impedance line has
S-parameters which are the complex conjugate of
the positive line. Thus, the loci of S11 and S21
on the Smith Chart move in the opposite circular
direction from those of Sll and S21.
Alternatively, a -ZC transmission line with
length 0 acts like a ZC line with length -0.

QUASI-TEM ASYMMETRIC COUPLER

Since the matrix products L c and c II, do not
result in symmetric matrices then two different
transformations, namely Tv and m, are needed to
diagonalize them, respectively. However, since
rL c and c L have the same set of eigenvalues, the
orthogonal mode propagation velocities for the
voltage and current waves are the same. This is
expressed as

[

117t52
o I/”mz 1=TV-lk IETV=TI_l CLTI

where

Tv =
[

11
Rvc Rv7t 1and V=Tv;

T~ E
[

11
RIC RIZ 1

and I=T1;

%5 and % are wave propagation velocities for the
c and n orthogonal modes, respectively, where c
denotes the co-phase or generalized even mode and
n denotes the anti-phase ( Z radians,) or
generalized odd mode.
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If the Lc matrix satisfies the congruence
condition (3,4),

o-c= [1AB
CD’

where
A+ B=C+D

then
Cl I C2 = (L1-Lm) I (Lz-Lm).

This equation expresses t~ p~~eical meaning
described by Speciale: . . . congruence
condition may be expressed by saying that the
introduction of the nonhomogeneous dielectric in
the empty structure must not affect the value of
the ratio of the per-unit-length line-to-ground
capacitances. ”

When the congruence condition is met, the
propagation velocities of the orthogonal modes
and the transformation matrices are simplified
into the following forms.

?%=
1

~ (LI-LuI)(C1 - Cm) + (L2-LIu)C:

d (Lz-Lm)(C2-Cm) + (L1-Lm)Cm

and

TV =
[

11
1 -CIIC2 1

T1 =

[

11
c2/cl -1 1

The orthogonal mode capacitances are given by

l_i* C iTv =
[

c1 o
0 Cl+ [(C1 + C2)/C2]Cm 1

[
cc o=

o Cn 1

Again the TEM line equivalent circuit i$
found by reversing the transformation to get

c=TI
[ 1

cc o TV-l
o Cz

or

c = c2/(cl+ C2)
[

(Cd:c)cc
(c2/:)cc 1

+ c2/(cl+ C2)
[

Cz -cYr
-Cn Cn 1

In the above equation, c and n mode are separated
in the original c matrix as the superposition of
two matrices. We can thus represent each matrix
with a capacitive network. And since each network
now has only one propagation velocity, it is
possible to replace each capacitor in the network
with a TEM transmission line to construct the
complete equivalent circuit.

Substitution of the expressions for Cc
and CZ into the above expression results in

c=
[

c 1‘/(cl + C2) c 1c#(cl +C2) +
c 1Cll(cl + C2) C2 I(C1+C2)1

[
[clc2/(cl+ C2)]+Cnl -[clc2/(cl+c2)] - cm

-[clc2/(cl +C2)]- cm [clc2/(cl+c2)] +Cnl1

The corresponding TEM networks are shown in
Figure 3. It can be easily verified that by
setting Ct = C2, the above equations reduce to
exactly those derived for the symmetric quasi-TEM
coupled line.
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Figure 3. The four line equivalent circuit
for an asymmetric quasi-TEM coupler, assuming

u~ is congruent.

Quasi-TEM Parallel Line Two Port Circuits

Various presented equivalent
circuits for assortedpa&&i-TEM parallel coupled
line two-port prototypes. Among them, there are
Zysman and Johnson (6) on symmetric coupled line,
Allen (7) on congruent asymmetric coupled line,
and Tripathi (8) on general asymmetric coupled
line. With the use of the four line equivalent
circuit, it is possible to derive alternative
equivalent two-port circuits in the previously
mentioned paper.
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In the two-port equivalent circuit,
Richards’ Transform is used to replace shorted or
opened stub with its equivalent inductor or
capacitor respectively. In the case of a negative
impedance line, the inductance or capacitance is
negative. Using the four line approach Figure 4
shows circuits equivalent for several quasi-TEM
coupled line two port elements.

(a)

(b)

1

2 3

CONCLUSION

Equivalent circuits for quasi-TEM coupled
lines have been developed for symmetric line
(Cl = C2) and for asymmetric lines having a
congruent L.c matrix. It has been shown (5) that
the congruenm assumption is very general. The
error is insignificant provided the line widths
is narrower than the substrate thickness, a
condition .generally. met in practical circuits.
These equvalent cmcults are e~~ to implement
CAE system such as TOUC1~H~ONE which accepts and
correctly calculates “ transmission line
performance even for negative characteristic
impedances.
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Figure 4. Equivalent circuits for (a) a Shorted
Symmetric section, (b) a shorted Interdigital
section, (c) a shorted Comb section, (d) a

Meander section, and (e) a Spurline section.
Note that Zi’s defined in figure 3.
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